Monitoring the adverse effects of psychotropic drugs – need for an evidence-based approach

Dr Sumeet Gupta1, Dr Udayan Khastgir2, Dr Ogba Onwuchekwa3, Dr Ioana Varvari4

1 Consultant Psychiatrist with Harrogate Community Mental Health Team, part of Tees, Esk and Wear Valleys NHS Foundation Trust, UK, and visiting senior lecturer at York University,
2 Consultant psychiatrist with Darlington Crisis Team, part of Tees, Esk and Wear Valleys NHS Foundation Trust, UK.
3 Senior Registrar working for Leeds and York Partnership NHS Foundation Trust. And general adult higher trainee pursuing an endorsement in liaison psychiatry.
4 Psychiatry Registrar with Tees Esk and Wear Valleys NHS Foundation Trust.

*email: sumeet.gupta@nhs.net

Received: 2021-10-20; Accepted: 2022-02-25
DOI: --------------

Abstract
Psychotropic drugs (those that affect a person’s mental state) are frequently associated with adverse effects. For many physical adverse effects, it is necessary to do baseline blood tests to avoid giving medication to patients who are at a high risk of particular adverse effects and to monitor blood tests to either avoid or manage specific adverse effects. Most treatment guidelines recommend blood tests to monitor the adverse effects of psychotropic drugs.

However, most of the recommendations from commonly used practice guidelines are based on expert opinions and low levels of scientific evidence leading to wide variations in recommendations. This area is a clinically significant area which has not received due attention from clinicians and researchers alike. In this review, we have compared blood test monitoring recommendations, by various national and international treatment guidelines, of commonly used psychotropic drugs such as antipsychotic drugs, and mood stabilising drugs. This is a narrative review, in which we have critically appraised the recommendations and highlighted the need for evidence-based monitoring of adverse effects of psychotropic drugs. Finally, we have made suggestions to make the monitoring recommendations more scientifically valid and meaningful.

Keywords
Psychotropic Drugs, Adverse Effects, Monitoring, Management Of Adverse Effects, Practice Guidelines

INTRODUCTION
All pharmacological interventions are associated with adverse effects; psychotropic medications (those that affect a person’s mental state) are no exception. The choice of psychotropic for a patient is often driven by effectiveness and the adverse effects of the medication, as well as a myriad of other factors (Zimmerman et al., 2004). The adverse effects burden is one of the commonest cited reasons for non-compliance in mental health services (Agyapong et al., 2009). Therefore, the reduction of the burden of adverse effects is one of the main clinical priorities for patients and clinicians.

The adverse effects of psychotropic medications vary from mild transient to long-term serious, including fatal effects. Sometimes these adverse effects are predictable and dose-dependent, (e.g., sedation, extrapyramidal symptoms, akathisia) but some others are unpredictable and idiosyncratic reactions (e.g., agranulocytosis, neuroleptic malignant syndrome) to medications. Therefore, the monitoring of adverse effects is important in managing them.

The summary of product characteristics (SmPC) is a legal document approved as a part of the marketing authorisation of medication by a regulator (European Medicines Agency, US Food & Drug Administration, and Medicines and Healthcare products Regulatory Agency in the UK). The SmPC contains detailed information about the medications, that include their adverse effects profile and also makes recommendations for the monitoring of significant adverse effects. It is updated regularly based on post-marketing studies or reports from clinicians.
and patients. However, spontaneous reporting systems put in place by drug regulators to stimulate reporting by clinicians suffer from poor reporting, because of a lack of interest in reporting (Hazell and Shakir, 2006). Moreover, establishing causality of an adverse effect can be at times challenging and might require careful analysis of many factors (Naranjo et al., 1981). In clinical practice, patients should be informed about possible adverse effects and the monitoring requirements by the clinicians, before commencing on a psychotropic drug.

Most adverse effects can be monitored via direct reports made by patients or elicited by clinicians. The involvement of a wider team including clinical pharmacists has been shown to improve the recognition of adverse effects (Stuhec and Gorenc, 2019).

However, some adverse effects, such as drug-induced diabetes, raised cholesterol, triglyceride levels or neutrophil counts, can be prevented and recognised early on through blood tests.

It is generally accepted that all monitoring would be beneficial for patients. However, it depends on many factors and comes with many unintended consequences. For example, intense monitoring with inconvenient and frequent blood tests might dissuade patients and clinicians from using effective medication. We know this is the case with clozapine and lithium (Malhi et al., 2012; Siskind and Neilson, 2020). In a survey of patients with schizophrenia for whom clozapine was suggested, about 35% of the patients refuse to consider clozapine because of the need for monitoring and perception of the severity of its adverse effects (Gee et al., 2017). Moreover, the cost of the monitoring in mental health services is substantial and all monitoring might not be worthwhile.

Monitoring of adverse effects of psychotropic drugs is a central activity in the management of most psychiatric conditions. The SmPC of a drug include details of its adverse effects and also makes recommendations about monitoring of adverse effects. However, most of the guidelines regarding the monitoring of the adverse effects of psychotropic drugs have evolved gradually from clinical practice and are based on expert opinions. Hence, it is not uncommon to find varying recommendations from national and international guidelines. It is also surprising that most clinical guidelines, including The National Institute for Health and Care Excellence (NICE) guidelines for mental health disorders, do not justify the monitoring recommendations, regarding the choice of parameter and frequency of monitoring (2014a,b). This is largely due to a lack of scientific research assessing the utility of monitoring recommendations in mental health.

The purpose of this article is to raise the issue of a lack of scientific evidence in the monitoring of adverse effects of psychotropic drugs rather than providing recommendations. We have reviewed the monitoring recommendations of various guidelines and critically appraised the recommendations.

Principals of monitoring

The main purpose of monitoring is to enable the prevention, early identification, and effective management of adverse effects. Baseline blood tests are carried out to avoid initiating said treatment in patients who are at a high risk of specific adverse effects and to ensure that changes in the monitoring parameters can be reliably attributed to treatment. After that, regular blood tests are carried out at pre-specified intervals to ensure the early identification and management of adverse effects. The recommendations for parameters, frequency and duration of monitoring should be based on the pathophysiology and clinical significance of the adverse effects. Moreover, before proposing any form of monitoring, we must be reasonably sure that such monitoring will improve clinical outcomes for patients (Glasziou et al., 2005).

The broad guidelines for monitoring adverse effects are: the adverse effects should be clinically significant and relevant; there should be a reliable test that can detect a substantial difference; early identification should improve outcomes and when identified, effective management options should be available (Glasziou et al., 2008).

We should also assess the risk of identifying false positives and unnecessary interventions thereafter.

In other words, it should be relatively clear how to interpret and react to abnormal results. We should avoid over-reacting to the random variation of parameters such as stopping lithium based on one abnormal estimated glomerular filtration rate (eGFR) value. We should also not retest until there is a real chance of change, such as measuring lipid profile (selection of blood tests used to find cholesterol and triglyceride abnormalities) a week after starting an antipsychotic drug. One should also be aware of dose-response curves for both benefits and harms. Finally, the advantages of monitoring should justify the resources used for monitoring.

The frequency of monitoring should be driven by the course and clinical significance of the adverse effects. For example, if adverse effects appear earlier in the treatment, then the monitoring should be more frequent.
in the initial phase of the treatment. For example, the risk of agomelatine-associated hepatotoxicity is significantly higher in the first six months. Hence, regular blood tests for liver function tests (LFTs) have been recommended for this period only. After that LFTs should be informed by clinical condition.

There has been substantial research evidence regarding monitoring for the prevention of diabetes. Based on modelling, it has been suggested that more frequent monitoring is not always cost-effective and monitoring becomes more effective if it is linked with active intervention (Si et al., 2014; Kahn et al., 2010). Hence, the monitoring strategies should be subjected to scientific scrutiny to ensure these are beneficial to patients and are also cost-effective use of the resources. Moreover, monitoring recommendations should also emphasise interventions linked with the recommendations.

Monitoring of adverse effects of lithium

Lithium is recommended as a first-line drug for the maintenance of bipolar disorder and as an augmenting agent for treatment-resistant depression. Its most clinically significant adverse effects include weight gain, hypothyroidism, hypercalcemia, and renal adverse effects that include chronic kidney disease (CKD) and renal failure. The SmPC of lithium specifies that renal thyroid and cardiac function (especially in patients with cardiovascular disease) should be evaluated in all patients at baseline and periodically. However, it does not elucidate the parameters and frequency of monitoring. NICE guidelines for bipolar disorder (2014b) recommend the following baseline measures before initiating lithium: weight/body mass index, blood tests for urea and electrolytes including calcium, eGFR, thyroid function and full blood count (FBC). It also recommends six-monthly weights, urea and electrolytes including calcium, eGFR and thyroid function tests. Therapeutic monitoring of serum levels of lithium is also important not only in ensuring effective and safe serum levels but also in managing its dose-related adverse effects such as tremor and possibly polyuria/polydipsia or chronic kidney disease.

Thyroid function tests

NICE guidelines for bipolar disorder (2014) recommend measuring “thyroid function” at baseline and thereafter every six months. A thyroid function test usually refers to thyroid stimulating hormone (TSH) and thyroxin (T4) levels. NICE guidelines for the management of thyroid disorder (2019) recommended measuring only TSH if secondary hypothyroidism (pituitary disease) is not suspected. Additionally, T4 is to be done only in patients whose TSH level is above the reference range. It also recommends that people with subclinical hypothyroidism have annual thyroid function tests if they have features suggestive of an underlying disease or raised thyroid autoantibodies. Otherwise, they should have thyroid function tests every two to three years.

Hypothyroidism is a common adverse effect of lithium and the reported prevalence of hypothyroidism and subclinical hypothyroidism varies from 8-19% and 23% versus 0.5%-1.8% and 10.4% in the general population (Kleiner et al., 1999). The risk of hypothyroidism in the general population is higher in females and older/elderly people, and for patients who have raised thyroid autoantibodies. Hence, not surprisingly, lithium-associated hypothyroidism is five times more common in females and eight times more in patients with thyroid autoantibodies (Bocchetta et al., 2007). The patients are most likely to develop lithium-associated hypothyroidism within 6-18 months of the initiation, though some patients develop hypothyroidism later as well (APA bipolar guideline 2002). One cohort study reported a 2.15% risk of developing hypothyroidism/year; which is substantially less than the 5-8%/year reported risk for the conversion of subclinical hypothyroidism to overt hypothyroidism in the general population (Bocchetta et al., 2001; Karmisholt et al., 2011).

The parameters for monitoring of thyroid function in various guidelines also include baseline TSH, a full thyroid profile, thyroid antibodies and ultrasound of thyroid and follow-up monitoring recommendations also varies from six to 12 months (Table 1). A few authors have also recommended more intense monitoring in > 45-year-old females based on high risks (Kirov et al., 2005; Lazarus, 2009). One possible option could be to do more intense monitoring of high-risk patients (female and with thyroid antibodies) during high-risk periods (initial 18 months) and less intense monitoring afterwards and for low-risk patients. The SmPC also mentions that lithium should not be commenced unless a patient is euthyroid (has a normally functioning thyroid gland).

Renal function

Lithium is associated with an array of renal adverse effects (relating to the kidney function). The most common initial adverse effect is that of impaired urinary concentration (up to 40%) and this presents as polyuria and polydipsia. This can be easily picked up by educating the patients and carefully eliciting the symptoms. Other adverse effects include the long-term risks of CKD in about 20% of patients on lithium therapy, which can
progress to CKD stage 5 or end-stage renal disease (Bendz et al., 2010; Gupta et al., 2013; Raja, 2011). Lithium is primarily excreted by renal route hence patients with CKD are at a high risk of renal toxicity and more likely to progress to end-stage renal disease. Hence, lithium should be used very cautiously in this population and it is contraindicated in patients with severe CKD.

CKD, on the other hand, does not initially present with any signs or symptoms. Hence, regular blood tests are needed to identify glomerular impairment. Apart from the risk of progression, CKD is also associated with an increased risk of cardiovascular disorders (Gupta et al., 2013).

NICE guidelines for bipolar disorder (2014b) recommends baseline urea, electrolyte and eGFR tests, then repeating these tests at six-monthly intervals. Additionally, if urea and creatinine levels become elevated or eGFR consecutively reduces over two more tests then we need to assess the rate of deterioration of the renal function and to follow NICE guidelines on CKD.

Lithium-associated CKD is usually insidious in onset and becomes apparent only after many years of Lithium therapy. NICE’s CKD guidelines (2014c) recommends more than once in a year monitoring of renal function only if eGFR decreases less than 45ml/min or if a decline in eGFR is associated with significant proteinuria; even in patients suffering from a systemic disease which is affecting the renal function (such as diabetes and hypertension) or taking the nephrotoxic drug (such as non-steroidal anti-inflammatory drugs). Hence, the six-monthly monitoring of renal function in all patients is not proportional to the risks. Moreover, there is a dearth of guidance around the best ways to deal with the abnormal results and there is still doubt about whether these are reversible or irreversible adverse effects. However, there is largely a consensus that in most cases risks and benefits analysis will favour the continuation of lithium (Gupta et al., 2013; Werneke et al., 2012).

Table 1: Recommendations of diverse guidelines on routine monitoring of patients treated with lithium.

<table>
<thead>
<tr>
<th>Recommended baseline tests</th>
<th>Recommended follow-up monitoring</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>British National Formulary (2020).</td>
<td>Renal and thyroid function and electrolyte (including calcium).</td>
<td>Serum electrolyte (including calcium), eGFR and thyroid function every six months.</td>
</tr>
<tr>
<td>National Institute of Health and Care Excellence (2014).</td>
<td>Urea and electrolyte (including calcium) eGFR and thyroid function.</td>
<td>Urea and electrolyte (including calcium) eGFR and thyroid function every six months.</td>
</tr>
<tr>
<td>British Association for Psychopharmacology (2016).</td>
<td>Blood creatinine concentrations × e-GFR Thyroid function</td>
<td>Renal and thyroid function – every 12 months patients with stable thyroid and renal function and no lithium dose change or whenever clinical status change.</td>
</tr>
<tr>
<td>International Society for Bipolar Disorder (2018).</td>
<td>Electrolytes including calcium Serum creatinine e GFR 24-hour creatinine clearance (if history of renal disease) TSH</td>
<td>Thyroid + renal + calcium at six months and at least annually thereafter or as clinically indicated.</td>
</tr>
<tr>
<td>American Psychiatric Association (2002).</td>
<td>Urea and creatine level measurement and thyroid Function</td>
<td>Renal function should be tested every two to three months during the first six months. Thyroid function should be evaluated once or twice during the first six months. After that renal and thyroid function may be checked every six months to one year in stable patients or whenever clinically indicated.</td>
</tr>
<tr>
<td>Royal Australian and New Zealand College of Psychiatrists (2015).</td>
<td>Renal [urea, creatinine, electrolytes] Endocrine (TSH, Serum calcium, parathyroid hormone)</td>
<td>All baseline parameters to be repeated after six months of the initiation then annually.</td>
</tr>
<tr>
<td>SmPC (2020).</td>
<td>Renal and thyroid function Cardiac function in patients with cardio-vascular disease</td>
<td>Renal, cardiac and thyroid function should be reassessed periodically.</td>
</tr>
</tbody>
</table>

eGFR- estimated glomerular filtration rate, TSH-Thyroid stimulating hormone.
Like NICE guidelines, other guidelines also continue to suggest monitor renal function by monitoring urea, creatinine apart from eGFR.

Measuring urea levels is no longer recommended for the monitoring of the renal function. eGFR is preferred over urea and creatinine levels, as urea level is also affected by many non-renal factors. On the other hand, the recommended frequency of monitoring varies from three to 12 months (Table 1).

Moreover, renal function gradually decreases with age; it is a normal part of the ageing process and can also be affected by non-renal factors. Hence, measuring eGFR frequently is likely to lead to false alarms and many patients might suffer more harm from the discontinuation of lithium. Recent literature, including the NICE CKD guidelines (2014c), has suggested that urine albumin creatinine ratio (ACR) along with eGFR should be used to monitor renal function, as these two parameters complement each other in predicting the risk of a further worsening of renal function. Recently psychiatric guidelines also started to add ACR to monitor the renal function in established cases of CKD (Gupta et al., 2013; Kripalani et al., 2009).

Therefore, it would be useful if the recommendation regarding monitoring of renal function can be revised both in terms of parameters and frequency. Current recommendations of NICE guidelines of six-monthly monitoring appear to be excessive considering the risk and course of the adverse effects. Moreover, it does give the impression that lithium is more nephrotoxic (damaging to the kidneys) than diabetes or hypertension. It would also be helpful to produce specific guidance regarding the management of lithium associated renal impairment. Annual or less frequent monitoring of renal function using eGFR might be a more efficient way of monitoring and if a patient presents with the rapid decline of renal function or suffers from CKD, then monitoring should become more frequent and should also include ACR (APA, 2002; BAP, 2016; Gupta et al., 2013; Kripalani et al., 2009).

Hypercalcemia

Lithium can occasionally cause hypercalcemia, reportedly a wide range of prevalence 3.2 -62% (Kuman Tunçel et al., 2019); the wide range is due to a limited number of small studies in this area.

A systematic review and meta-analysis about the adverse effects of lithium found that blood calcium and parathyroid hormone levels were up to 10% higher in patients on lithium compared with controls (McKnight et al., 2012). The patients with mildly raised calcium levels might not present with any symptoms and only require careful monitoring. On the other hand, significant high levels or symptomatic hypercalcemia (presenting with mood symptoms, renal stones or osteoporosis) will require either treatment with cinacalcet or surgical intervention (Gitlin, 2016). This is usually a long-term adverse effect, although cases have been reported within one to two months of initiation of lithium (Szalat et al., 2009).

Most guidelines recommend monitoring calcium levels (Table 1). The Royal Australian and New Zealand College of Psychiatrists (2015) also recommends measuring the parathyroid hormone. On the other hand, recent NICE guidelines have altered the previous recommendation of annual monitoring every six months. It has not elaborated on the reason for the change. We assume that might be because they have recommended six-monthly monitoring of other parameters. The SmPC mentions parathyroid adenoma and hyperparathyroidism as adverse effects, but does not recommend any monitoring for these adverse effects.

This is an under-researched area and in clinical practice, we very infrequently come across patients who require discontinuation of lithium or medical or surgical intervention to manage hypercalcaemia. At present, based on the available evidence, it would be prudent to monitor calcium levels at least annually for all patients and more frequent estimation of calcium and parathyroid hormones in patients with hypercalcaemia. However, it is an under-researched area and in clinical practice and more research is required to establish the utility of frequency of calcium monitoring.

Monitoring of adverse effects of antipsychotic medications

Antipsychotic drugs are associated with a variety of neurological, endocrinal and metabolic adverse effects (Huhn et al., 2019). NICE guidelines for schizophrenia and bipolar disorders recommend the following baseline parameters; weight, waist circumference, pulse, blood pressure, assessments for any movement disorders, and laboratory tests (fasting blood glucose, HbA1C, lipid profile and prolactin levels). The monitoring of weight is recommended every week for the first six weeks, following which all measures except prolactin should be done at three months and 12 months thereafter annually. The SmPCs of antipsychotic drugs’ recommendations varies significantly. Generally, these recommend
monitoring of weight, blood sugar and lipid profile of antipsychotic drugs that are likely to have these adverse effects such as olanzapine and quetiapine etc, but these do not specify the frequency of monitoring or make any management recommendations.

The main purpose of the monitoring is to prevent and manage weight gain and reduce the risk of developing diabetes and hyperlipidaemia, to reduce morbidity and mortality due to cardiovascular disorders.

NICE guidelines for schizophrenia and bipolar disorders (2014a,b) suggest carrying out both fasting blood glucose and HbA1c levels at baseline and the specified intervals. However, recent NICE guidelines (2015) regarding the management of diabetes prefer HbA1c over fasting glucose level for the screening of patients for diabetes. Recently one retrospective study compared monitoring received by diabetic patients with or without severe mental illness, but they did not find any difference between monitoring received by the two groups. However, they did find higher mortality and less planned interventions in the severe mental illness group. One of the possible explanations is a lack of early diagnosis of complications and interventions in severe mental illness groups (Han et al., 2021).

This study highlights that apart from improving compliance with the monitoring we need to link appropriate interventions with the monitoring. Similarly, as we know that the treatment for hyperlipidaemia is guided by the risk of cardiovascular disorders; assessed by Q-risk factors or similar risks scores. Hence, it would be useful if the guidelines specify the management of these risk factors. Development of the Lester tool and Q-risk 3 (which takes into account the risks due to severe mental illnesses and atypical antipsychotics) are useful developments and should be incorporated into the relevant guidelines (Shiers et al., 2014; Hippisley-Cox et al., 2017).

Antipsychotic-induced hyperprolactinaemia (high prolactin levels) is an important adverse effect; however, NICE guidelines for schizophrenia and bipolar disorder (2014a,b) provide no information about repeating prolactin level or managing it. Hyperprolactinaemia is commonly seen with antipsychotic drugs like risperidone, paliperidone, amisulpride or typical antipsychotic drugs. The SmPCs of the above drugs does mention raised prolactin as an adverse effect, but do not recommend any monitoring. Similarly, there is a wide divergence of recommendations, with regards to parameters and frequency among different guidelines (Table 2). The relationship between the degree of hyperprolactinaemia and symptoms is variable. We can have patients with very high levels of prolactin but without any symptoms and vice versa. Patients with high prolactin levels commonly present with sexual or menstrual problems. Due to the nature of symptoms, patients voluntarily do not disclose sexual problems and are more likely to discontinue the treatment (Montejo et al., 2010). Moreover, even asymptomatic patients can suffer from long-term adverse effects such as infertility and osteoporosis. Therefore, it has been recommended that all patients on antipsychotic drugs should have a baseline and after three months of the initiation of an antipsychotic drug, serum prolactin levels check (Gupta et al., 2017). Investigating those cases in which a patient presents with the symptoms is likely to result in many patients with clinically significant hyperprolactinaemia being missed.

Clozapine is the drug of choice for treatment-resistant schizophrenia. However, there have been concerns regarding the underutilisation of clozapine and many patients have to wait and undergo trials of several antipsychotic drugs lasting a few years before initiation of clozapine (Rubio, 2020). One of the main reasons is a strict protocol regarding the need for regular blood tests to ensure early detection of potentially fatal agranulocytosis. Clozapine was withdrawn in 1975 after the death of patients on clozapine due to agranulocytosis in Finland. In 1989 it was reintroduced in many countries with strict protocols, and drug manufacturers were given the responsibility to ensure it is safe use. Current recommendations in most European countries, including the UK, state that the white blood cell count must be checked prior to the commencement of clozapine, and then monitored as follows: weekly for the first 18 weeks then fortnightly until week 52 and afterwards four-weekly monitoring.

Over the years, it has become clear that clozapine associated agranulocytosis is not as common as once it was believed. Current literature suggests the risk of developing agranulocytosis is about 0.7% and the majority of the cases of agranulocytosis have been reported within the first year of the initiation. The risk after a year deceases drastically to about 0.07%, which is not very different from other antipsychotic drugs (Schulte 2006; Verbelen et al., 2015; Myles et al., 2018). Additionally, with the advent of newer treatments most patients with agranulocytosis can be treated and its fatality rate is about 3%. The chances of a patient on clozapine dying due to complications related to agranulocytosis is estimated to be 0.016 %, which is significantly less than the risk of someone dying in Europe due to a road accident (Ingimarsson et al., 2016).
Table 2: Recommendations of diverse guidelines on routine monitoring of patients treated with antipsychotic drugs

<table>
<thead>
<tr>
<th>Guide</th>
<th>Recommended baseline tests</th>
<th>Recommended follow-up monitoring</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>British National Formulary</td>
<td>FBC, Renal and Liver function</td>
<td>Annually</td>
<td>At four to six months and thereafter annually</td>
</tr>
<tr>
<td></td>
<td>FBG/Hba1c</td>
<td></td>
<td>At three months and thereafter annually</td>
</tr>
<tr>
<td></td>
<td>Lipid profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Institute of Health and Care Excellence</td>
<td>Blood Sugar, FBG, HbA1c, Lipid Profile, Prolactin levels</td>
<td>At 12 weeks and then annually.</td>
<td>Does not specify</td>
</tr>
<tr>
<td>Maudsley Guidelines (2018)</td>
<td>Renal (U&E’s + eGFR) FBC, Blood lipids, FBG, Prolactin levels</td>
<td>Annually as part of the routine check at three months and then annually thereafter</td>
<td>They recommend HbA1C only if FBG is abnormal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At four to six months and then annually thereafter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At six months and then annually thereafter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>American Psychiatric</td>
<td>FBC, Renal, liver, thyroid function and electrolytes</td>
<td>Every visit for six months and at least quarterly thereafter</td>
<td></td>
</tr>
<tr>
<td>Association (2020)</td>
<td>Fasting blood glucose or HbA1c, lipid profile</td>
<td>If clinically indicated (Clozapine)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screen for metabolic syndrome criteria</td>
<td>At four months and at least annually thereafter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prolactin if indicated on clinical history</td>
<td>At four months and at least annually thereafter</td>
<td>Screening for symptoms of hyperprolactinemia at each visit until stable, then yearly if treated with an antipsychotic known to increase prolactin.</td>
</tr>
<tr>
<td>World Federation of Societies of Biological Psychiatry (2013).</td>
<td>Fasting plasma glucose and Fasting Lipid profile FBC</td>
<td>At 12 weeks and annually thereafter;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At four and 12 weeks and annually thereafter</td>
<td></td>
</tr>
<tr>
<td>Royal Australian and New Zealand College of Psychiatrists (2016).</td>
<td>FBG, HbA1c and Fasting lipid profile</td>
<td>At 12, 24 weeks and annually thereafter</td>
<td>Prolactin can be more frequently monitored if clinically indicated.</td>
</tr>
<tr>
<td></td>
<td>Fasting and FBC</td>
<td>At 12, 24 weeks and annually thereafter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prolactin and FBC</td>
<td>At 24 weeks and annually thereafter</td>
<td></td>
</tr>
</tbody>
</table>

eGFR – estimated glomerular filtration rate, FBC – full blood count, FBG – fasting blood sugar, Hb1Ac – glycated hemoglobin, LFT– liver function tests, U&E – urea and electrolytes
Therefore, over the past few years, questions have been raised about both frequency of blood monitoring and cut off criteria. US FDA has already changed the monitoring criteria and introduced more flexible stoppage rules. According to the new recommendations clozapine therapy should be interrupted for an absolute neutrophil count (ANC) is less than $1 \times 10^9/L$, if the prescriber suspects clozapine-induced neutropenia. Even when the ANC drops below $1 \times 10^9/L$, the prescribers can continue to prescribe clozapine if they consider the benefits to outweigh risks for a given patient (Oloyede et al., 2021). Now there is a growing call to make blood monitoring less frequent, after a year to less frequent or discontinuing it completely and also to change the recommended actions based on the blood results (Ingimarsson et al., 2016; Shulte, 2006; Myles et al., 2018). No doubt that the strict monitoring protocols have saved many lives, but it might have also deprived many patients of a most effective treatment for their illness. Moreover, the benefits of clozapine including reduced all-cause mortality should also be taken into account.

Monitoring of adverse effects of valproate

Valproate has been used as a mood stabiliser for many years. Its common adverse effects include weight gain, tremor, sedation, liver toxicity and haematological alterations such as thrombocytopenia and leucopenia. The hepatic and haematological adverse effects could be fatal, hence monitoring is usually recommended for LFTs and haematological parameters (Murru et al.,

Table 3: Recommendations of diverse guidelines on routine monitoring of patients treated with valproate.

<table>
<thead>
<tr>
<th>British National Formulary (2020).</th>
<th>Recommended baseline tests</th>
<th>Recommended monitoring</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFT FBC</td>
<td></td>
<td></td>
<td>A more frequent monitoring is recommended in the first 6 months if patients are more at risk.</td>
</tr>
<tr>
<td>National Institute of Health and Care Excellence (2014).</td>
<td>FBC LFT</td>
<td>At six months and yearly thereafter</td>
<td></td>
</tr>
<tr>
<td>British Association for Psychopharmacology (2016).</td>
<td>LFT</td>
<td>First six months</td>
<td>They emphasise on clinical vigilance being more important than the measurements.</td>
</tr>
<tr>
<td>Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) Guidelines (2013).</td>
<td>FBC</td>
<td>Fasting glucose Fasting lipid profile Platelets Electrolytes and calcium LFT Prothrombin and partial thromboplastin time U&E’s + eGFR Prolactin</td>
<td>Hematology profile and LFTs should be obtained at three to six months during the first year, and yearly thereafter and as clinically indicated.</td>
</tr>
<tr>
<td>Maudsley Guidelines (2018).</td>
<td>Same as NICE and BAP</td>
<td>Same as NICE and BAP</td>
<td>The only difference is that they mention SPC recommendations: More frequent LFTs in the first months and albumin and clotting panel.</td>
</tr>
<tr>
<td>American Psychiatric Association (2002).</td>
<td>LFTs FBC</td>
<td>LFTs FBC</td>
<td>Every six months</td>
</tr>
<tr>
<td>Royal Australian and New Zealand College of Psychiatrists (2015).</td>
<td>FBC LFTs</td>
<td>FBC LFTs</td>
<td>At six, 12 and 24 months They mention that the risk of severe liver damage is greatest in the first months of therapy.</td>
</tr>
<tr>
<td>SmPC (2021).</td>
<td>LFT FBC</td>
<td>LFT FBC</td>
<td>Periodically during the first three months, in high-risk patients. Among usual investigations, tests which reflect protein synthesis, particularly prothrombin rate, are most relevant.</td>
</tr>
</tbody>
</table>

FBC – full blood count, LFTs – liver function tests.
The SmPC of valproate recommends that liver function should be measured before therapy and then periodically monitored during the first six months of therapy, especially in those who seem most at risk, and those with a prior history of liver disease. Among usual investigations, tests which reflect protein synthesis, particularly prothrombin rate, are most relevant. NICE guidelines for bipolar disorders (2014b) suggest baseline weight, LFTs and FBC checks. It provides a further explanation regarding LFTs and states that there is a poor correlation between absolute values of hepatic enzymes and the extent of liver damage and states that the accepted norm of the clinical significance of raised LFTs is persistent elevation of liver enzymes more than three times of the upper normal limit (ULN). Furthermore, raised hepatic enzymes of any magnitude accompanied by reduced albumin or impaired clotting suggest severe liver disease. The latter is also suggested in the SmPC. For follow-up monitoring, the guidelines recommend repeating weight, LFTs and FBC, six months following the initiation and then repeating these tests annually. Table 3 illustrates the recommendations of the SmPC and various guidelines.

Valproate is known to be associated with a variety of hepatic adverse effects, these vary from common asymptomatic elevation of liver enzymes to severe liver toxicities (acute hepatocellular injury and hyperammonia). The mechanism through which valproate can cause hepatic injury and failure is not yet fully understood. For clarity, it is perhaps important for our reader to understand that there are two types of drug-induced liver injuries (DILI). The first one is intrinsic, which is expected, dosage-related, often asymptomatic, with onset at initiation and recovers with dose adjustment. The cut off for identifying the clinically significant DILI is a raise in alanine aminotransferase (ALT) and aspartate transaminase (AST) > 3xUNL. This arbitrary cut off appears to separate intrinsic DILI (with the potential of evolving in acute hepatic injury if not acted upon) from a normal, again expected, adaptive reaction of the liver metabolising a new chemical component which usually is self-remitting. 10-20% of patients on valproate therapy are reported to have a transient rise of liver enzymes. The available evidence so far states that this reaction and its development is expected to appear with treatment initiation to the six months, being uncommon thereafter, depending on dosage increase, therapeutic ranges and developing comorbidities (Telles-Correia et al., 2017).

The second one is called idiosyncratic reaction and is more specific for valproate induced acute hepatocellular toxicity. This reaction is unexpected and can develop between two and three years from initiation of medication, mostly within the first six months of the initiation for valproate (Schmidt & Siemes, 1998; Telles-Correia et al., 2017).

It affects 1 in 20,000 to 49,000 patients receiving the medication. Young age (<2 years), presence of other neurological conditions and concurrent use of other anticonvulsants appear to be important risk factors for acute hepatocellular toxicity, and this is rare in adults. Most patients present with sudden onset jaundice, lethargy, nausea, vomiting, and abdominal pain and more often these symptoms precede the elevation of liver enzymes. Hence, it has been suggested that regular yearly monitoring is unlikely to screen for the above adverse effect. The only reliable factors appear to be a clinical presentation and educating the patients about the early warning signs and symptoms. EASL Clinical Practice Guidelines describe different patterns of idiosyncratic liver injury (hepatocellular – ALT > 5x upper limit of normal value (ULN); cholestatic – alkaline phosphatase (ALP) alone >2x ULN; and mixed with an ALP/ALT ratio between 2 – 5). These cases warrant discontinuation of valproate and urgent medical attention. The guidelines suggest the importance of regular monitoring of LFTs to effectively manage DILI, as in most cases it will include either reducing the dose or stopping the medication, once there is reasonable doubt about the causality. They also suggest regular monitoring of LFTs but also stressed that the frequency of monitoring interval should be informed by the level of evidence for a DILI hazard attributable to the drug. They also suggest using big data to estimate the risk of adverse hepatic reactions from individual drugs (EASL, 2019).

There is some evidence and pertinent biological theories that support and describe the importance of monitoring the LFTs in the first six months. There is little to support and encourage the monitoring after this period, the evidence becoming scarce after one to two years and almost non-existent after three years. Annual routine investigations are unlikely to catch this in the absence of clinical symptomatology. Moreover, after this period of time, other factors should also be considered such as patient’s comfort (a constant reminder of disease), costs and compliance with treatment (Meijboom & Grootens, 2017; Schmidt & Siemes, 1998). BAP Guidelines and Meijboom and Grootens, 2017, advise abandoning regular monitoring of LFTs and suggest that monitoring can be effectively done by careful monitoring of symptoms. However, there are still lots of uncertainties about the risk of long-term clinically significant hepatic
adverse reactions associated with valproate and the utility of regular monitoring of LFTs.

Valproate has also been implicated in haematological abnormalities such as thrombocytopenia, neutropenia, leucopenia and pancytopenia. The reported prevalence of thrombocytopenia ranges from 0.6-27.8%. The risk is more significant in the first year after initiation. On the other hand, the risk of neutropenia and leucopenia is more in the first two years. The reported prevalence of the two conditions is 26% and 0.4%. Most of these adverse effects can be managed by reducing the dose of valproate. As blood tests can pick up abnormality before the emergence of symptoms, hence regularly checking FBC in the first two years, after every three to six months, following initiation of valproate or after the change of dose has been recommended (Meijboom & Grootens, 2017). The risk is very minimal after two years. Hence, there is very limited utility in continued monitoring after two years.

CONCLUSION

Adverse effects of psychotropic drugs should be identified and managed proactively by clinicians, and they should have a detailed discussion with patients about possible adverse effects before the initiation of psychotropic drugs. The monitoring of adverse effects of psychotropic drugs is an essential component in the management of most severe psychiatric disorders. Unfortunately, monitoring guidelines including NICE guidelines have not received the due scientific scrutiny and attention and, so, most of the recommended monitoring in the NICE guidelines are based on lower levels of scientific evidence.

The argument can be made for more frequent monitoring of any adverse effects as the assumption is that it will always be beneficial. However, this may not be the case. Frequent monitoring might result in decreased use of effective medication. Or, worse still, unclear guidelines might also lead to the inappropriate discontinuation of an effective treatment.

We propose that in the future the guidelines making monitoring recommendations should give rationales justifying the recommendations like they do for any treatment recommendations. Additionally, monitoring recommendations should also be accompanied by expected interventions based on abnormal results. We hope that this would reduce the diverge of recommendations and allow readers to critically appraise the recommendations. It would also be worthwhile to compare the effectiveness of different monitoring recommendations, not only in terms of beneficial effects to patients (such early identification and effective management of adverse effects) but also in terms of cost-effectiveness as well. This can be achieved by conducting prospective cohort studies or randomised controlled trials. Lastly, all monitoring recommendations should be updated regularly based on the most recent available data, following the principles of evidence-based medicine.

DECLARATIONS

We confirm that all authors have read and understood the conditions of publication of this paper in the journal. We also confirm that the paper has been solely submitted to this journal and is not published or under review in any other journal.

Authors’ contributions: SG conceived the idea and discussed with all co-authors (UK,OO,IV). SG wrote the initial draft with input from other authors. UK reviewed and edited the manuscript.

Ethics approval: Not required

Conflicts of interest/Competing interests: None

Funding: None

Informed consent: Not applicable

Study registration: Not applicable.

REFERENCES

Endocrinol Invest. 2007 May;30(5):363-6.

National Institute for Health and Care Excellence (2014a) Bipolar Disorder: Assessment and Management (Clinical Guideline CG185). NICE

National Institute for Health and Care Excellence (2014b) Psychosis and Schizophrenia in Adults: Prevention and Management (Clinical Guideline CG178). NICE

